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In this Letter we investigate the properties of a quantum impurity model in the presence of additional
many-body interactions between mobile carriers. The fundamental question which is addressed here is how
the interactions in the charge and spin sectors of an itinerant system affect the quantum impurity physics in the
vicinity of the intermediate coupling fixed point. To illustrate the general answer to this question we discuss
a two-channel charge Kondo circuit model. We show that the electron-electron interactions resulting in the
formation of a massive spin mode in an itinerant electron subset drive the system away from the unstable
non-Fermi-liquid (NFL) fixed point to the stable Fermi-liquid (FL) regime. We discuss the thermoelectric
response as a benchmark for the NFL-FL crossover.
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Introduction. The quantum thermoelectricity of low-
dimensional systems is a rapidly developing direction of
modern condensed matter physics. Owing to the incredible
development of the nanotechnology, the fabrication of highly
controllable and fine-tunable nanodevices gives access to a
broad variety of charge, spin, and heat quantum transport
phenomena. Since the early 1990s [1–5], thermoelectric effi-
ciency has been predicted to be enhanced in low-dimensional
systems in comparison with bulk materials. Moreover, heat
quantization [6–8], heat Coulomb blockades [9], and the uni-
versality of thermoconductance fluctuations [10] have been
investigated in different nanostructures.

One of the most prominent nanodevices is a single-
electron transistor (SET) [11], whose transport properties
are fully governed by the Coulomb blockade (CB) phe-
nomenon [12–14]. The SET usually consists of a small island
[a so-called quantum dot (QD)], connected to electron reser-
voirs [15] by tunnel barriers or by quantum point contacts
(QPCs) [16]. With its small size, electrostatically tunable
properties, and sensitive thermoelectric response, SET pro-
vides important information about strong electron-electron
interactions, interference effects, and resonance scattering
on the quantum transport [17,18]. Recent experiments on
the thermopower (TP) in QD systems quantified the role
of sequential tunneling and cotunneling on thermoelectric
transport through the SET [19] and also demonstrated pro-
nounced nonlinear thermoelectric effects [20]. Moreover, fine
tuning the coupling between the QD and leads allowed ac-
cess to thermoelectric transport through the Kondo-quantum
impurity [19]. These promoted studies in both experiment
and theory of thermoelectric transport in QDs in the Kondo
regime.
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The Kondo effect [21], which shows both resonance scat-
tering and strong interactions [22], has been detected in SETs
fine tuned by the gate to odd CB valleys [23]. The QD behaves
as a quantum spin-1/2 impurity [24] since the strong correla-
tions between it and the conduction electrons in the reservoirs
lead to the removal of the Coulomb blockade, and result in a
nonmonotonic temperature dependence of the conductance at
low temperatures [25–27].

While the conventional Kondo phenomenon is attributed
to a spin degree of freedom of the quantum impurity, the
charge Kondo effect deals with an isospin implementation
of the charge quantization. The latter occurs when a large
metallic QD in the Coulomb blockade regime is strongly
coupled to one (or several) lead(s) through a (or several)
almost fully transmitting single-mode QPC(s) [28–30]. This
setup is described by the Flensberg-Matveev-Furusaki model
(FMF). In the absence of a magnetic field, the FMF setup is
mapped into a two-channel Kondo (2CK) model: The left- and
right-moving modes are treated as isospin variables, whereas
the spin projection quantum numbers of electrons serve as
different channels [29–31]. Very recently, the FMF model has
been achieved in breakthrough experiments [32,33]. These
experiments mark an important step in the study of multichan-
nel Kondo (MCK) problems in which the universality class
known as non-Fermi-liquid (NFL) behavior dominates [34].
The NFL picture in the FMF model, however, is extremely
sensitive to variations of external parameters. Since the
intermediate coupling NFL fixed point is unstable, the Fermi-
liquid (FL) ground state [35,36] is achieved by applying
relevant small perturbations. For instance, any small but finite
external magnetic field applied to the SET results in chan-
nel asymmetry and thus changes the universality class from
the two-channel Kondo to the single-channel Kondo (1CK)
regime [35,36].
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The significant difference of the FMF model compared to
previous theoretical models that have been used to explain
the Kondo effect is that the transmission of electrons through
QPCs happens in one dimension (1D), therefore, the Abelian
bosonization technique [37–40] is applied to solve the prob-
lems. Previous works studying the FMF model [28–31,35,36]
disregarded the effects of an electron-electron interaction in
the QPC(s). One thus raises an important question regarding
whether or not the NFL property can be broken spontaneously
(without any variation of any external parameter) and how
the electron-electron interactions affect the NFL picture in the
FMF model.

In an interacting 1D system, the state resulting from
the addition or removal of an electron may decay quickly
into collective charge and spin excitations which propa-
gate with different velocities (spin-charge separation) [41].
A theoretical model describing a 1D interacting electron
system which is predicted to behave quite differently from
the FL, is called the Luttinger-liquid (LL) model [42,43].
The advantage of the LL model is that most of the inter-
action processes (namely, the forward g4,||, g4,⊥, g2,||, g2,⊥
and the backward g1,|| scatterings) [44] can be described by
the quadratic terms of the bosonic fields. The LL Hamil-
tonian in the bosonic representation is thus modified from
the FL one through the effective Fermi velocities vFρ, vFσ

(the indices ρ, σ stand for the charge and spin modes, re-
spectively) and additional dimensionless parameters gρ, gσ

(so-called Luttinger parameters) [45]. However, the term de-
scribing the backscattering g1,⊥ process between electrons
with opposite spin projection values cannot be expressed
quadratically in bosonic representation, and it must be written
explicitly [40]. As mentioned in Ref. [40], the effects of the
g1,⊥ term are quite drastic, and it is important to consider
them.

In this Letter we investigate the effects of the electron-
electron interactions in the LL, especially the role of
spin-dependent backward scattering, on the thermoelectric co-
efficients in the FMF setup. In the absence of a g1,⊥ process or
in the case when it is irrelevant (gσ � 1), the low-temperature
scaling behavior of the TP is S ∝ T gσ −1 log T . This scaling
is paradigmatic for the two-channel Kondo (2CK) model. In
addition, the reflection (transmission) coefficient at the QPC
is renormalized due to the electron interactions in the LL
[as known in the Kane-Fisher phenomenon (KFP) [46]]. Any
relevant g1,⊥ process appears when gσ < 1 opens a gap in the
spin mode (or one says that the spin field is massive) [47], and
the TP is proportional to the temperature S ∝ T Mgσ /2 with
M the spin field’s mass. We predict that the backscattering
process between electrons with opposite spin g1,⊥ in the LL
can destroy the local NFL-2CK state and drive the system to
the FL-1CK regime. In other words, our results show evidence
of the existence of a g1,⊥ process if experimentalists find the
FL behavior of TP in the FMF setup.

Model. We consider a nanodevice as shown in Fig. 1 con-
sisting of a large metallic QD in the weak Coulomb blockade
regime weakly coupled to the left electrode (the source) via a
tunnel barrier and strongly coupled to the right one through
a single-mode QPC. The QD-QPC structure (the drain) is
built of a two-dimensional electron gas (2DEG) and assumed
to be in thermal equilibrium at temperature T . By applying

FIG. 1. (a) Schematic of a single-electron transistor device: A
large metallic quantum dot (QD) is weakly coupled to the left
electrode through a weak barrier and strongly coupled to the right
electrode through a single-mode quantum point contact (QPC). The
QD and electrodes are formed in a two-dimensional electron gas
(2DEG). The tunnel barrier is characterized by a small transparency
|t | � 1, while the electron scattering in the QPC is determined by
a reflection amplitude |r| � 1. The QD and the right electrode (the
drain, marked by the orange color) are at the reference temperature
T while the left electrode (the source, marked by the red color) is
at higher temperature T + �T . A thermovoltage Vth is applied to
the drain to compensate the charge flow induced by the tempera-
ture drop �T . The effects of electron-electron interactions in the
source are accounted by the Fermi-liquid theory. The role of the
electron-electron interaction in the drain, in particular, in the narrow
constriction of the size L (the QPC) is the main subject discussed in
this Letter. (b) An example showing the evolution of the charge and
spin Luttinger parameters gρ and gσ : The interactions asymptotically
vanish both at the position of the tunnel barrier (x = −∞) and away
from the QPC (x = +∞).

an external gate, one can control the electron interactions in
the vicinity of the QPC [48–50]. The electrons in this 1D
constriction are thus described by the LL model [40]. The size
L characterizing the typical length scale for the area where
the electron-electron interactions are appreciable is assumed
to satisfy the condition that the energy vF /L is low enough,
especially vF /L � gρEC . The source separated from the QD
by a tunnel contact and considered at higher temperature
T + �T is also formed by 2DEG and can be described with-
out any loss of generality by conventional Fermi-liquid theory.
The temperature drop �T is controlled by using a current
heating technique [19]. The �T across the tunnel barrier is
assumed to be small compared to the reference temperature T
to guarantee the linear response regime. Applying thermovolt-
age Vth to implement a zero-current condition for the electric
current between the source and drain allows us to compute
the thermopower (TP) as S = GT /G|I=0 = −Vth/�T , where
GT = I/�T is the thermoelectric coefficient, and G = I/Vth

is the electric conductance.
The weak coupling between the left electrode and the QD is

described by a tunnel Hamiltonian Ht = ∑
kα (tc†

kα
dα + H.c.),

where |t | � 1 is the hopping amplitude, and operators ckα

and dα account for electrons with spin (α =↑,↓) in the
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noninteracting left electrode and in the QD at the point of
tunnel junction (x = −∞), respectively.

At the lowest order of perturbation theory over a small
transparency |t | � 1 the transport coefficients can be com-
puted through the energy-dependent tunneling density of
states (DOS) related to the Matsubara Green’s function. Here,
we assume that the DOS of electrons in the source νL is a
constant, and electrons in the QD at the weak link (x = −∞)
are noninteracting. We can therefore apply the Fermi golden
rule at the weak link with �T/T � 1.

At the end, the conductance G and the thermoelectric coef-
ficient GT are defined through a correlation function K (τ ) of
the interacting electrons in the drain as follows [30,31],

G = GL
πT

2

∫
1

cosh2(πT t )
K

(
1

2T
+ it

)
dt, (1)

GT = − iπ2

2

GLT

e

∫
sinh(πT t )

cosh3(πT t )
K

(
1

2T
+ it

)
dt, (2)

where GL � e2/h denotes the conductance of the left tunnel
barrier without the influence of the dot.

It is convenient to describe the interacting electrons in the
QD-QPC in the bosonized representation [28–31,35,36]. In
the spirit of Matveev-Andreev theory [31], the time-ordered
correlation function K (τ ) is computed through the functional
integration over the bosonic fields φ↑(↓)(x, t ),

K (τ ) = Z (τ )/Z (0), (3)

Z (τ ) =
∏

α=↑,↓

∫
Dφα exp [−S0 − SC (τ ) − S ′], (4)

where S0, SC , and S ′ are Euclidean actions describing the
free Luttinger liquid, the Coulomb blockade in the QD, and
the backscattering at the QPC, respectively. The action S0

is presented as a sum of two independent actions [37,38,40]
S0 = S (ρ)

0 + S (σ )
0 , where

S (ρ)
0 = vFρ

2πgρ

∫
dx

∫ β

0
dt

[
(∂tφρ )2

v2
Fρ

+ (∂xφρ )2

]
, (5)

S (σ )
0 =

∫
dx

∫ β

0
dt

{
vFσ

2πgσ

[
(∂tφσ )2

v2
Fσ

+ (∂xφσ )2

]

+ 2g1⊥D2

(2πvF )2
cos[

√
8φσ (x, t )]

}
. (6)

Here, the charge φρ = (φ↑ + φ↓)/
√

2 and spin φσ = (φ↑ −
φ↓)/

√
2 degrees of freedom are separated. vF is the Fermi ve-

locity in the noninteracting system, while vFρ and vFσ are the
interaction renormalized Fermi velocities of charge and spin
modes [45]. The dimensionless charge and spin Luttinger pa-
rameters gρ and gσ characterize the g4,||, g4,⊥, g2,||, g2,⊥, g1,||
electron interaction processes [37,38,40]. From the theory of
LL, 0 < gρ(σ ) < 1 (gρ(σ ) > 1) describes 1D electrons with
a repulsive (attractive) Coulomb interaction, and gρ(σ ) = 1
corresponds to the noninteracting situation. The prefactor g1⊥
in formula (6) characterizes the 2kF spin-flip backscattering in
which the fermion fields with opposite spin projection values
are coupled and they exchange sides of the Fermi surface after
the interaction. Due to the fact that the g1⊥ process is not

quadratic in a bosonic representation, its effect is not included
in the Luttinger parameters [see the third (cosine) term in
Eq. (6)]. Therefore, the free action of the spin mode contains
a massive term, in contrast to the massless charge excitation
as shown in Eq. (5). The relevance of the mass can be studied
through a renormalization group (RG) analysis of the sine-
Gordon model (see, e.g., Refs. [39,40] for the details). The
mass term of the spin mode is irrelevant if gσ � 1, while it is
relevant for gσ < 1. In the above equations, D is an ultraviolet
cutoff, which is related to the length parameter a = vF /D in
the LL-related literature [39,40], and β = 1/T (here we adopt
units h̄ = kB = 1).

The Coulomb interaction in the QD is described by the
Hamiltonian HC = EC[n̂ − N]2, where EC = e2/2C is the
charging energy (C is the QD capacitance), and n̂ = n̂L +∑

α=↑,↓ φα (0, t )/π is the operator of the number of electrons
entered through the tunnel barrier and the QPC, respec-
tively [51]; N is a dimensionless parameter proportional to
the gate voltage Vg. Without loss of generality, the num-
ber of electrons entering the dot from the left electrode can
be replaced by a time-dependent function nτ = θ (t )θ (τ −
t ), where θ (t ) is the Heaviside step function. Therefore,
the Coulomb blockade action SC in bosonic representation
reads [28–31,35,36,51]

SC = EC

∫ β

0
dt

[
nτ (t ) +

√
2

π
φρ (0, t ) − N

]2

. (7)

Finally, the contribution S ′ in the action of the QD-QPC
structure characterizes the weak backscattering at the QPC,

S ′ = −2D

π
|r|

∫ β

0
dt cos[

√
2φρ (0, t )] cos[

√
2φσ (0, t )], (8)

where |r| � 1 is a small reflection amplitude. Interestingly,
one notices that both the g1⊥ interaction process in the LL and
the backscattering (8) happen simultaneously at the QPC.

Massless spin field. We first study the situation in which
the spin field φσ is massless. In accordance with the RG
analysis [40], it occurs when gσ � 1.

In the absence of backscattering r = 0, the functional inte-
gral Eq. (4) is Gaussian. The correlator K0(τ ) ≡ K (τ )|r=0 is
computed at low temperature T � EC and at τ � E−1

C . The
main contribution to the electric conductance is the zero-order
term of the perturbation expression over the reflection ampli-
tude |r| with the condition we will mention later. Therefore,

G = GLC(gρ )

(
T

gρEC

) 1
gρ

, (9)

with

C(gρ ) =
√

π

2

(
π2

2γ

)1/gρ
�(1 + gρ/2)

�(3/2 + gρ/2)
, (10)

depends only on the value of the charge Luttinger parameter
gρ , �(y) is the gamma function, γ = eC , and C ≈ 0.577 is
Euler’s constant. The electron interactions in the LL renor-
malize both the scaling of the conductance (G ∝ T 1/gρ ) and
the charging energy (gρEC). Note that at r = 0 the conduc-
tance depends only on the interaction in the charge mode
through the parameter gρ . The integrals over the spin field
φσ are unaffected by nτ (t ), and the correlator K0(τ ) is thus
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independent from the free spin mode action in Eq. (6). If
gρ = 1, we restore the result for the noninteracting case G =
(π3GL/8γ )(T/EC ) as shown in Ref. [30]. The temperature
scaling of the conductance in Eq. (9) is relevant with the
results explained in Refs. [28,29,52–54]: G ∝ T 2/M, where
M is the number of channels in the charge Kondo effect (it is
two, the number of electron’s spin projection in FMF model or
the number of the QPCs in the experimental integer quantum
Hall setup [32,33,52]). In addition, the G ∝ T 1/gρ scaling
also represents the fact that there are no stable electronlike
quasiparticles in the LL. As a consequence, the quasiparticle
residue vanishes and the power-law behavior appears in many
observables [46,55–57].

The thermoelectric coefficient GT vanishes at the |r| = 0
limit due to the electron-hole symmetry. A finite contribu-
tion in GT is computed in perturbation theory over a small
reflection coefficient |r| � 1. Expanding the partition func-
tion Eq. (4) over S ′, we obtain K (τ ) = K0(τ )[1 + (〈S ′2〉τ −
〈S ′2〉0)/2]. One should notice that the fluctuations of the
massless spin mode are not suppressed at low energies, and
the average 〈S ′〉 vanishes. Thus, a nonvanishing backscat-
tering correction to the correlation function appears only in
the second order in |r|. The thermoelectric coefficient GT is
computed with logarithmic accuracy as

GT = −GL|r∗|2
e

A(gρ, gσ )CT (gρ, gσ ) sin(2πN )

× log
(EC

T

)(
T

gρEC

) 1
gρ

+gσ −1

, (11)

where |r∗| = |r|(gρEC/D)(gρ+gσ )/2−1 is the interaction renor-
malized reflection amplitude [58], and the interaction-

dependent prefactors, A(gρ, gσ ) = (2γ )gρ− 1
gρ π

2
gρ

−gρ+gσ −1,
and

CT (gρ, gσ ) =
∫ ∞

−∞
dz

sinh(z)

[cosh(z)]3+ 1
gρ

{F̃ (z−) − F̃ (z+)}. (12)

Here, we define F̃ (z) = eigσ (z−π/2−i ln 2) × 2F1[gσ /2, gσ , (2 +
gσ )/2, e2iz]/gσ , where 2F1(a, b, c, d ) is the hypergeometric
function, and z± = π/2 ± iz. The thermoelectric coefficient
GT shows the temperature-dependent T 1/gρ+gσ −1 log T scal-
ing. In the noninteracting regime, gρ = gσ = 1, it recalls the
result GT ∝ T log(T ) in Ref. [31].

The effect of the electron interaction on GT is threefold: (i)
the power-law temperature dependence GT ∝ (T )1/gρ+gσ −1;
(ii) the renormalization of the charging energy EC → gρEC ;
and (iii) the renormalization of the weak scattering potential at
the QPC r → r∗. The last effect reveals the KFP [46]. The in-
teraction renormalized reflection amplitude is consistent with
the corresponding RG analysis showing that if the interaction
in the LL (gρ, gσ < 1) is repulsive, the effective reflection am-
plitude increases, achieving the weak coupling limit (r∗ → 1).
On the contrary, the scattering at the QPC becomes irrelevant
(r∗ → 0) for the attractive interactions (gρ, gσ > 1).

Plugging Eqs. (9) and (11) into the definition formula of
TP, S = GT /G, we obtain

S = −|r∗|2
e

CS (gρ, gσ ) sin(2πN ) log
(EC

T

)(
T

gρEC

)gσ −1

,

(13)

where CS (gρ, gσ ) = A(gρ, gσ )CT (gρ, gσ )/C(gρ ). The temper-
ature scaling of TP, T gσ −1 log T , in Eq. (13) vanishes when
T → 0 for gσ > 1. This zero-temperature vanishing charac-
teristic is consistent with the corresponding nonperturbative
scaling of the TP maximum for 2CK in Ref. [31]. In the charge
Kondo effect the charge mode is always blockaded locally,
while the spin mode usually fluctuates freely. The gapless spin
mode is responsible for the NFL behavior. Therefore, only the
spin Luttinger parameter appears in the T gσ −1 log T scaling.
The effect of the interaction in the spin mode becomes more
dominant in the case when the spin mode is massive. In addi-
tion, the TP S in Eq. (13) diverges at zero temperature in the
noninteracting spin field case gσ = 1, showing the breakdown
of the perturbation theory at sufficiently low temperature.
Thus, the validity the perturbation theory is justified by the
condition for temperature: |r∗|2gρEC � T � gρEC [59] if
|r∗|2gρEC > vF /L. Another dramatic manifestation of the LL
properties in the behavior of TP is the appearance of the KFP
through the renormalized reflection amplitude at the QPC
|r∗|, which is completely different from the results shown in
Refs. [60–63].

Note that Eqs. (9) and (11) can be obtained by applying
the spatially inhomogeneous Green’s function method for the
finite LL wire in the so-called “high-temperature” regime
vFρ(σ )/L � T � gρEC [64–66]. In fact, the theory of quan-
tum transport in a 2CK-FMF model with a finite LL wire
demonstrating the QPC vicinity is studied [67]. We find that
the temperature scalings of the thermoelectric coefficients are
independent of the LL length L. For the purpose of investigat-
ing the electron interaction effects, we focus on a discussion
of the limit L → ∞. The finite-L effects will be considered
elsewhere [67].

Massive spin field. In this section, we address the question
of how the pinning potential of the spin mode [cosine term
in Eq.(6)] affects the thermoelectric properties of the spinful
LL-based QD-QPC structure in the case gσ < 1. The saddle-
point solution of the spin mode is φσ,sp = 2πn/

√
8 for g1⊥ <

0, while φσ,sp = π/
√

8 + 2πn/
√

8 for g1⊥ > 0 [40] (n is an
integer number).

The free action of the spin fluctuations ϕσ = φσ −
2πn/

√
8 around the saddle-point solution reads as

S (σ )
0 =

∫
dx

∫ β

0
dt

{
vFσ

2πgσ

[
(∂tϕσ )2

v2
Fσ

+ (∂xϕσ )2

]

+ 2g1⊥D2

π2v2
F

ϕ2
σ

}
. (14)

From Eq. (14), the mass of the spin mode can be defined
as M = 2D(vFσ /vF )

√
gσ |g1⊥|/πvFσ . However, the correct

value of M should be found self-consistently by apply-
ing Feynman’s variational principle [40] or a more strict
RG analysis of the sine-Gordon model [39,40]. Both meth-
ods give a more complicated dependence of the mass
on the interaction constant and Luttinger parameter, M =
D(vFσ /vF )(|g1⊥|/πvFσ )1/(2−2gσ ), in comparison with the per-
turbative analysis. We will use the latter expression of M in
this Letter.

The spin mode of the LL is now pinned at low energies,
and the nonvanishing backscattering correction to the cor-
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relation function K (τ ) is thus obtained in the first order of
the perturbation theory over the small reflection amplitude
(|r| � 1): K (τ ) = K0(τ )[1 − 〈S ′〉τ + 〈S ′〉0]. Straightforward
calculations give the expression of the TP at low temperature
T � M, gρEC as

S = −1

e
|r∗|C∗

S (gρ ) sin(2πN )
T

gρEC

(
M

2
√

2gρEC

) gσ
2

, (15)

in which the interaction-dependent prefactor is

C∗
S (gρ ) = ξπ4+gρ

C(gρ )

(
2γ

π2

) gρ

2 − 1
gρ

∫ ∞

−∞
dy

sinh2(y)

cosh4+ 1
gρ (y)

, (16)

where ξ ≈ 1.59 [31,53]. Similar to the way that the Coulomb
blockade acts on the charge fluctuations, the existence of
the finite mass in the spin mode suppresses its fluctuations
around the saddle point at low energies, and the TP Eq. (15)
is thus proportional to |r∗| and temperature. The ratio of two
“masses” M/gρEC determines the strength of TP at a given
spin mode Luttinger parameter gσ . In fact, the backscattering
at the QPC, which determines the efficiency of the thermo-
electric transport, is similar to the backward interaction g1⊥
process of the LL. Therefore, the influence of the g1⊥ process
on the TP is dominant.

Equations (13) and (15) represent the central results of this
Letter. Interestingly, the TP for the massless spin mode case
depends on temperature nonmonotonically [S ∝ T gσ −1 log T ,
with gσ � 1, as shown in Eq. (13)] while the TP for the
massive spin mode case with gσ < 1 is proportional to the
temperature [S ∝ T , as shown in Eq. (15)]. The former shows
the NFL property characterizing the 2CK, while the latter
shows the FL picture of the 1CK. What physical quantities
control this crossover from 2CK to 1CK? Notably different
from the fact that a finite external magnetic field breaks
the symmetry of the up-spin and down-spin as explained in
Ref. [36], our current results show that the relevant back-
ward g1⊥ scattering process in the LL (at gσ < 1) induces
the instant asymmetry of these two Kondo channels at the
QPC. This Kondo channel symmetry breaking induces the
crossover from 2CK to 1CK. An alternative point of view

for the 2CK-1CK crossover in this work can be represented
as follows: In the charge Kondo effect the charge mode is
always blockaded (locally) while the spin mode is usually
unblockaded. It refers to the gapless spin mode. This gapless
mode results in the local NFL property of 2CK, in contrast to
the local FL appearing in the 1CK regime. If the spin mode is
additionally gapped (e.g., either by a “trivial” Zeeman effect
or by “nontrivial” many-body effects in the LL), the local NFL
state is destroyed.

It was argued (see, e.g., Ref. [68]) that interactions in
a QPC are the source of the so-called “0.7 anomaly” and
Kondo-like effects are invoked for those explanations [68], but
recent studies show no link between the Kondo effect and the
0.7 anomaly [69]. In this work, we deal with the mesoscopic
Coulomb blockade which assumes a weak charge quantization
and does not pronounce conductance steps. However, reduc-
ing interactions in the QPC is helpful for the enhancement of
TP and the protection of the NFL properties. Therefore, it is
necessary to fabricate a clean ballistic QPC [70].

Conclusions. In this Letter, we have investigated theo-
retically the influence of the electron interactions in the
LL-based QD-QPC structure on the two-channel charge
Kondo problem. Using the Abelian bosonization technique
and calculating the thermoelectric coefficients perturbatively
with respect to the reflection amplitude at the QPC, we predict
the low-temperature scaling behavior of the Seebeck coeffi-
cient as S ∝ T gσ −1 log T for the massless spin mode case and
S ∝ T for the massive one. We predict that the relevance of the
backscattering g1⊥ process induces a universal crossover from
NFL-2CK to FL-1CK. It opens an interesting possibility for
investigating the crossover between multi- and single-channel
Kondo regimes in experiments.
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